The abundance of the spliceosomal snRNPs is not limiting the splicing of U12-type introns
Author(s) -
Heli K. J. Pessa,
Annukka Ruokolainen,
Mikko J. Frilander
Publication year - 2006
Publication title -
rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.037
H-Index - 171
eISSN - 1469-9001
pISSN - 1355-8382
DOI - 10.1261/rna.213906
Subject(s) - snrnp , intron , biology , rna splicing , group ii intron , small nuclear rna , spliceosome , gene , genetics , precursor mrna , splicing factor , microbiology and biotechnology , rna , rna dependent rna polymerase
The rate of excision of U12-type introns has been reported to be slower than that of U2-type introns, suggesting a rate-limiting bottleneck that could down-regulate genes containing U12-type introns. The mechanistic reasons for this slower rate of intron excision are not known, but lower abundance of the U12-type snRNPs and slower rate of assembly or catalytic activity have been suggested. To investigate snRNP abundance we concentrated on the U4atac snRNA, which is the least abundant of the U12-type snRNAs and is limiting the formation of U4atac/U6atac complex. We identified mouse NIH-3T3 cell line isolates in which the level of both U4atac snRNA and U4atac/U6atac complexes is reduced to 10%–20% of the normal level. We used these cell lines to investigate splicing efficiency by transient transfection of a reporter gene containing a U12-type intron and by quantitative PCR analysis of endogenous genes. The splicing of the reporter U12-type intron was very inefficient, but the activity could be restored by overexpression of U4atac snRNA. Using these U4atac-deficient NIH-3T3 cells, we confirmed the results of previous studies showing that U12-type introns of endogenous genes are, indeed, excised more slowly than U2-type introns, but we found that the rate did not differ from that measured in cells displaying normal levels of U4atac snRNA. Thus our results suggest that the cellular abundance of the snRNPs does not limit U12-type intron splicing under normal conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom