z-logo
open-access-imgOpen Access
Conserved RNA secondary structures promote alternative splicing
Author(s) -
Peter J. Shepard,
Klemens J. Hertel
Publication year - 2008
Publication title -
rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.037
H-Index - 171
eISSN - 1469-9001
pISSN - 1355-8382
DOI - 10.1261/rna.1069408
Subject(s) - spliceosome , biology , rna splicing , intron , exon , exonic splicing enhancer , alternative splicing , genetics , computational biology , polypyrimidine tract , rna , precursor mrna , splice site mutation , gene
Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom