Hyperspectral system trade-offs for illumination, hardware and analysis methods: a case study of seed mix ingredient discrimination
Author(s) -
Carolina Blanch-Pérez del Notario,
Carlos López-Molina,
Andy Lambrechts,
Wouter Saeys
Publication year - 2020
Publication title -
journal of spectral imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.256
H-Index - 6
ISSN - 2040-4565
DOI - 10.1255/jsi.2020.a16
Subject(s) - hyperspectral imaging , computer science , artificial intelligence , computer vision , image processing , pixel , segmentation , convolutional neural network , image resolution , pattern recognition (psychology) , image (mathematics)
Block size CNN feature size Mean accuracy Minimum accuracy Iterations required Convergence time (s) 1 × 1 9 73.3 % 50.1 % 35 90.0 3 × 3 9 × 9 = 81 84.6 % 68.0 % 35 87.0 5 × 5 25 × 9 = 225 87.9 % 75.7 % 35 94.3 7 × 7 49 × 9 = 441 89.1 % 74.3 % 25 75.6 9 × 9 81 × 9 = 729 90.0 % 76.2 % 25 101.0 11 × 11 121 × 9 = 1089 89.4 % 71.0 % 25 119.2 Table S1. Impact of input image block size on CNN performance (pixel accuracy), Snapscan image under halogen illumination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom