
Neurobiology of the Edg2 Lysophosphatidic Acid Receptor
Author(s) -
Akira Yoshida,
Hiroshi Ueda
Publication year - 2001
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.87.104
Subject(s) - lysophosphatidic acid , neurogenesis , biology , receptor , neuroscience , microbiology and biotechnology , autotaxin , signal transduction , biochemistry
Lysophosphatidic acid (LPA, 1-acyl-sn-glycerol-3-phosphate) is a well-known lipid growth factor that is found widely in various tissues including brain and is reported to drive different intracellular signaling pathways. In the nervous system, LPA studies have drawn many neuroscientists' attention because it has some actions related to neurogenesis such as cell rounding and proliferation. Remarkable advances in this field have been obtained along with the discovery of the cDNA clone for its receptor, vzg1/edg2, a member of the seven transmembrane-type edg family. Successive studies have revealed that edg2 activation by LPA mediates several neurobiological actions related to neurogenesis, neuronal excitability and survival activity on developing and postnatal neurons. Here we focused their molecular basis of signaling through G proteins and in vivo roles of edg2 in such neurobiological events.