Open Access
Protein Kinase C Potentiates Capacitative Ca2+ Entry That Links to Steroidogenesis in Bovine Adrenocortical Cells
Author(s) -
Isamu Kondo
Publication year - 2000
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.82.210
Subject(s) - calphostin c , protein kinase c , thapsigargin , extracellular , activator (genetics) , calphostin , intracellular , medicine , endocrinology , microbiology and biotechnology , phorbol , chemistry , biology , kinase , receptor
I investigated the role of protein kinase C (PKC) in regulation of the capacitative Ca2+ entry and steroidogenesis in bovine adrenocortical (BA) cells. Thapsigargin (TG)-treatment depleted intracellular Ca2+ stores followed by induction of Ca2+ influx from the extracellular pool and also increasing of Mn2+ influx as an indicator of divalent cation influx in BA cells. Calphostin C, a PKC inhibitor, inhibited the TG-induced [Ca2+]i elevation dose-dependently (0.1-1 microM) and attenuated Mn2+ entry. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, potentiated the elevation of [Ca2+]i and enhanced Mn2+ entry by TG treatment. These results suggest that PKC may modulate capacitative Ca2+ entry in BA cells. In the presence of extracellular Ca2+, TG enhanced cortisol production in BA cells. Calphostin C attenuated the TG-induced steroidogenesis dose-dependently (0.25-1 microM). PMA enhanced the steroidogenesis dose-dependently (1-100 nM). These results suggested that PKC may have a modulatory effect on the capacitative Ca2+ entry that links to steroidogenesis in BA cells.