
Ca2+ Spark as a Regulator of Ion Channel Activity
Author(s) -
Yuji Imaizumi,
Yoshiaki Ohi,
Hisao Yamamura,
Susumu Ohya,
Katsuhiko Muraki,
Minoru Watanabe
Publication year - 1999
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.80.1
Subject(s) - regulator , spark (programming language) , ion channel , channel (broadcasting) , biophysics , chemistry , biology , computer science , telecommunications , biochemistry , receptor , gene , programming language
Ca2+ spark is a local and transient Ca2+ release from sarcoplasmic reticulum (SR) through the ryanodine receptor Ca2+-releasing channel (RyR). In cardiac myocytes, Ca2+ spark is an elementary unit of Ca2+-induced Ca2+ release (CICR) by opening of RyR(s) in junctional SR (jSR), which is triggered by Ca2+-influx through L-type Ca2+ channels to the narrow space between a transverse tubule and jSR. Ca2+ spark has, therefore, been described as the evidence for "the local control of excitation-contraction coupling". In contrast, Ca2+ sparks in smooth muscle have been reported in relation to Ca2+-dependent K+ (K(Ca)) channel activation and muscle relaxation. A spontaneous Ca2+ spark in a superficial area activates 10-100 K(Ca) channels nearby and induces membrane hyperpolarization, which reduces Ca2+ channel activity. In several types of smooth muscle cells, which have relatively high membrane excitability, an action potential (AP) elicits 5-20 Ca2+ hot spots (evoked sparks with long life) in the early stage via CICR in discrete superficial SR elements and activates K(Ca)-channel current highly responsible for AP repolarization and afterhyperpolarization. CICR available for contraction may occur more slowly by the propagation of CICR from superficial SR to deeper ones. The regulatory mechanism of ion channel activity on plasma membrane by superficial SR via Ca2+ spark generation in smooth muscle cells may be analogously common in several types of cells including neurons.