z-logo
open-access-imgOpen Access
Effects of Ridogrel, a Thromboxane Synthase Inhibitor and Receptor Antagonist, on Blood Pressure in the Spontaneously Hypertensive Rat
Author(s) -
Dale Quest,
Thomas W. Wilson
Publication year - 1998
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.78.479
Subject(s) - thromboxane a synthase , pharmacology , antagonist , chemistry , receptor antagonist , blood pressure , thromboxane , thromboxane a2 , receptor , medicine , endocrinology , biochemistry , platelet
Ridogrel is a dual acting thromboxane synthase inhibitor/TP receptor antagonist. We examined the effects of single and multiple doses on systolic blood pressure in stroke-prone spontaneously hypertensive rats. Single doses of ridogrel (5 to 125 mg/kg) did not affect systolic blood pressure or furosemide-stimulated excretion rates of thromboxane B2 or 6-keto-prostaglandin F1alpha, although ex vivo serum thromboxane B2 was dose-dependently reduced up to 95%. In contrast, repeated dosing (7 days) with ridogrel (3 to 25 mg/kg/day), had an antihypertensive effect in 12-week-old stroke-prone spontaneously hypertensive rats. At 25 mg/kg/day, ridogrel reduced systolic blood pressure from 200+/-6.1 to 173+/-6.7 mmHg (n=12, P<0.01). Ridogrel dose-dependently reduced serum thromboxane B2 and increased plasma renin activity. Unlike single doses, repeated dosing reduced urinary thromboxane B2 excretion (from 103+/-7 ng/day to 49+/-10 ng/day, P<0.01) while preserving 6-keto-prostaglandin F1alpha excretion. Ketoprofen, a cyclo-oxygenase inhibitor, (10 mg/kg/day for 7 days), depressed urine 6-keto-prostaglandin F1alpha in addition to attenuating serum and urine thromboxane B2. Ketoprofen prevented the antihypertensive effects of ridogrel. Ridogrel did not lower systolic blood pressure in Sprague-Dawley rats. We conclude that the antihypertensive effect of ridogrel involves preserving renal prostaglandin synthesis during thromboxane attenuation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here