
Inhibitory Effects of Rolipram on Partially Purified Phosphodiesterase 4 From Rat Brains
Author(s) -
Fukuichi Ohsawa,
Miki Yamauchi,
Hiroshi Nagaso,
Shoichi Murakami,
Jun Baba,
Aiko Sawa
Publication year - 1998
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.77.147
Subject(s) - rolipram , phosphodiesterase , chemistry , enantiomer , ic50 , enzyme , pharmacology , biochemistry , medicine , endocrinology , in vitro , stereochemistry , biology
Several previous studies have demonstrated that the phosphodiesterase 4 selective inhibitor rolipram affects cellular function at a much lower concentration than the reported Ki value for phosphodiesterase 4 inhibition. In this study, we examined the inhibitory effect of rolipram on rat brain phosphodiesterase 4 to determine the heterogeneity of the enzyme activity. Partial purification of various phosphodiesterases from the rat brain was performed by anion-exchange chromatography. The eluant was pooled into four fractions, two of which manifested cAMP-selective phosphodiesterase activity that was blocked by 10 microM of rolipram, indicating the presence of phosphodiesterase 4 in these fractions. The IC50 of rolipram (racemate) of these two fractions was 492 and 79 nM, respectively. The R-(-)-enantiomer of rolipram inhibited the cAMP-phosphodiesterase activity in the latter fraction 10 times more than did S-(+)-rolipram, and the inhibition of the former fraction was less stereospecific. Dixon plot analysis revealed that the rolipram enantiomers inhibited the cAMP-phosphodiesterase in the latter fraction in a multiphasic manner, with two Ki values, one at the micromolar level and the other at the sub-micromolar level, respectively, for both of the enantiomers. These results suggest that there is a heterogeneity for phosphodiesterase 4 in the rat brain, and some of the phosphodiesterase forms are sensitive to rolipram.