z-logo
open-access-imgOpen Access
Protection Against Glutamate Neurotoxicity in Retinal Cultures by Acidic Conditions
Author(s) -
Tomoya Saitoh,
Hiromu K. Mishima,
Keisuke Shoge,
Kumatoshi Ishihara,
Masashi Sasa
Publication year - 1998
Publication title -
the japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.76.87
Subject(s) - kainate receptor , glutamate receptor , nmda receptor , retinal , neurotoxicity , retina , extracellular , chemistry , biology , population , pharmacology , biochemistry , biophysics , receptor , neuroscience , ampa receptor , toxicity , medicine , environmental health , organic chemistry
We evaluated the effects of extracellular acidic conditions on glutamate-induced death in cultured retinal neurons. Primary retinal cultures, obtained from 3- to 5-day-old Wistar rats, were estimated to be consisted of mainly amacrine cells (90%) together with a small population of horizontal (8%) and ganglion cells (2%). We examined the effects of acidic pH (pH 6.0 to 7.0) on glutamate neurotoxicity by monitoring the delayed death of retinal neurons induced by brief (10 min) exposure to 1 mM glutamate followed by a 24-hr incubation. The glutamate-induced delayed death of cultured retinal neurons was attenuated with an acidic pH between 6.0 and 7.0. Furthermore, whole-cell patch-clamp recordings were taken from retinal neurons to examine the effects of acidic pH on N-methyl-D-aspartate (NMDA) or kainate receptor-mediated currents. NMDA- and kainate-induced currents were suppressed at pH 6.0 to 7.0 and pH 6.0 to 6.5, respectively. The acidity of the medium protected the retinal neurons from glutamate-induced delayed death, probably by inhibiting NMDA and/or kainate receptor activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom