
Electrophysiological and Pharmacological Characteristics of Ionotropic Glutamate Receptors in Medial Vestibular Nucleus Neurons: A Whole Cell Patch Clamp Study in Acutely Dissociated Neurons
Author(s) -
Norio Sakai,
Hisamitsu Ujihara,
Kumatoshi Ishihara,
Masashi Sasa,
Chikako Tanaka
Publication year - 1996
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.72.335
Subject(s) - ampa receptor , cnqx , nmda receptor , glutamate receptor , patch clamp , ionotropic effect , chemistry , kainic acid , excitotoxicity , metabotropic glutamate receptor , kainate receptor , electrophysiology , long term depression , neuroscience , biophysics , biology , receptor , biochemistry
A patch clamp study was performed to determine which subtype of ionotropic glutamate receptors is involved in the glutamate-induced excitation of the medial vestibular nucleus (MVN) neurons. Whole cell recording was performed on MVN neurons that were acutely dissociated by enzymatic and mechanical treatments. Application of glutamate at a concentration of 100 microM produced a current with a reversal potential of approximately 0 mV. The glutamate-induced current was completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), a non-N-methyl-D-aspartate (NMDA)-receptor antagonist. Application of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) and kainic acid (KA), non-NMDA-receptor agonists, at concentrations of 30 and 100 microM produced a concentration-dependent depolarization concomitantly with an increase in firing rates during current clamp recording. During voltage clamp recording, glutamate, AMPA and KA elicited a concentration-dependent current with an equilibrium potential of approximately 0 mV. To clarify whether NMDA receptors are present in MVN neurons, the effects of glycine on the glutamate- and NMDA-induced current were examined. Two types of NMDA receptor-mediated current (types 1 and 2) were obtained in terms of the difference in sensitivity to both magnesium ion and MK-801, which act on the NMDA-receptor channel. In the type 1 neurons, the NMDA-induced current was not apparently blocked by magnesium ion or MK-801, although a larger current was obtained in the absence of magnesium ion. In the type 2 neurons, marked blockade of the NMDA-induced current was seen in the presence of magnesium ion and MK-801, as previously reported in other neurons of the central nervous system. These findings indicate the presence of both non-NMDA and NMDA receptors, which are involved in primary afferent transmission, in the MVN neuron, and two distinct types of NMDA receptors.