
Effect of Membrane Depolarization by High K+ on Carbachol-Stimulated Phosphoinositides Hydrolysis in Guinea Pig Cerebral Cortical Slices
Author(s) -
Xiaoming Zhou,
Shuji Uchida,
Atsushi Mizushima,
Hiroshi Yoshida
Publication year - 1990
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.53.229
Subject(s) - carbachol , inositol , stimulation , depolarization , chemistry , inositol phosphate , inositol trisphosphate , verapamil , phosphatidylinositol , guinea pig , biophysics , medicine , endocrinology , biochemistry , calcium , biology , receptor , signal transduction , organic chemistry
Stimulation of phosphoinositide hydrolysis by carbachol was studied in slices of guinea pig cerebral cortex under normal conditions (4.7 mM K+) and depolarization conditions with high K+ (42 mM K+). Slices were labeled with [myo-3H]-inositol, and the effects of carbachol and high K+ on the formation of inositol-bisphosphates (IP2) and inositol-trisphosphates (IP3) were determined. Carbachol (10 mM) caused only 140% stimulation of the formations of IP2 and IP3 over the control value in normal Krebs Ringer Buffer (KRB), but about 200% stimulation in high K+ medium. Dose-response curves for the effect of carbachol on the formations of IP2 and IP3 showed that high K+ medium selectively decreased the ED50 value of carbachol for IP2 formation about 3-fold. A Ca++ channel blocker, verapamil, inhibited the synergistic effect of carbachol and high K+ on IP2 formation, and a decrease in extracellular Ca++ also inhibited IP2 formation induced by high K+, but these treatments had little, if any, effect on IP3 formation. The possibility that IP2 may be directly generated by hydrolysis of phosphatidylinositol 4-monophosphate (PIP) as well as from hydrolysis of IP3 was discussed.