z-logo
open-access-imgOpen Access
Effects of Idebenone (CV-2619) on Endogenous Monoamine Release and Cyclic AMP Formation in Diencephalon Slices from Rats
Author(s) -
Shigehiko Narumi,
Yasuo Nagai,
Mitsuru Kakihana,
Naoki Yamazaki,
Akinobu Nagaoka,
Yuji Nagawa
Publication year - 1985
Publication title -
japanese journal of pharmacology/japanese journal of pharmacology
Language(s) - English
Resource type - Journals
eISSN - 1347-3506
pISSN - 0021-5198
DOI - 10.1254/jjp.37.235
Subject(s) - methysergide , endogeny , diencephalon , monoamine neurotransmitter , endocrinology , medicine , dopamine , serotonin , 5 ht receptor , biology , norepinephrine , receptor , chemistry , hypothalamus
The effects of 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (idebenone, CV-2619) on the contents, turnover, release and uptake of monoamines, especially serotonin (5-HT), in various brain regions of Wistar rats were studied in vivo and in vitro. In normal rats, an intraperitoneal (i.p.) dose of 100 mg/kg of CV-2619 had no significant effect on the levels of norepinephrine (NE), dopamine (DA) and their metabolites, and 5-HT in the brain regions examined, but it increased the levels of 5-hydroxyindole-3-acetic acid (5-HIAA), the main metabolite of 5-HT, in many brain regions. In rats with cerebral ischemia, a low dose (10 mg/kg, i.p.) of CV-2619 normalized the decreased levels of 5-HIAA in the cerebral cortex, hippocampus, diencephalon and brain stem. A 5-HT biosynthesis inhibitor, DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.), decreased the levels of 5-HT in all brain regions to one-third of the control levels 24 hr after administration in normal rats. CV-2619 (10, 30 or 100 mg/kg, i.p.), administered 24 hr after the treatment with PCPA, accelerated the PCPA-induced 5-HT decreases in the hippocampus, diencephalon and brain stem in a dose-dependent manner. In vitro CV-2619, like p-chloroamphetamine (PCA), stimulated 5-HT release from slices of the hippocampus and diencephalon. CV-2619 slightly inhibited and PCA markedly inhibited 5-HT uptake into hippocampal slices. The mechanism of the 5-HT releasing action of CV-2619 in hippocampal slices seems to be mediated through endogenous calcium. These results suggest that CV-2619 has an enhancing effect on the turnover of 5-HT in the hippocampus, diencephalon and brain stem of rats.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here