Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling
Author(s) -
Andrew E. McKechnie,
Alexander R. Gerson,
Blair O. Wolf
Publication year - 2021
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.229211
Subject(s) - thermoregulation , evaporative cooler , basal metabolic rate , relative humidity , zoology , biology , ecology , chemistry , thermodynamics , endocrinology , physics
Evaporative heat dissipation is a key aspect of avian thermoregulation in hot environments. We quantified variation in avian thermoregulatory performance at high air temperatures (Ta) using published data on body temperature (Tb), evaporative water loss (EWL) and resting metabolic rate (RMR) measured under standardized conditions of very low humidity in 56 arid-zone species. Maximum Tb during acute heat exposure varied from 42.5±1.3°C in caprimulgids to 44.5±0.5°C in passerines. Among passerines, both maximum Tb and the difference between maximum and normothermic Tb decreased significantly with body mass (Mb). Scaling exponents for minimum thermoneutral EWL and maximum EWL were 0.825 and 0.801, respectively, even though evaporative scope (ratio of maximum to minimum EWL) varied widely among species. Upper critical limits of thermoneutrality (Tuc) varied by >20°C and maximum RMR during acute heat exposure scaled to Mb0.75 in both the overall data set and among passerines. The slope of RMR at Ta>Tuc increased significantly with Mb but was substantially higher among passerines, which rely on panting, compared with columbids, in which cutaneous evaporation predominates. Our analysis supports recent arguments that interspecific within-taxon variation in heat tolerance is functionally linked to evaporative scope and maximum ratios of evaporative heat loss (EHL) to metabolic heat production (MHP). We provide predictive equations for most variables related to avian heat tolerance. Metabolic costs of heat dissipation pathways, rather than capacity to increase EWL above baseline levels, appear to represent the major constraint on the upper limits of avian heat tolerance. Summary: Many physiological variables related to avian heat tolerance vary significantly with body mass, but also vary substantially among taxa that differ in their reliance on panting, gular flutter or cutaneous evaporation for evaporative heat dissipation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom