z-logo
open-access-imgOpen Access
The effects of temperature on the defensive strikes of rattlesnakes
Author(s) -
Malachi D. Whitford,
Grace A. Freymiller,
Timothy E. Higham,
Rulon W. Clark
Publication year - 2020
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.223859
Subject(s) - ectotherm , predation , escape response , biology , ecology , zoology
Movements of ectotherms are constrained by their body temperature due to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator-prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes (Crotalus) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling, and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species (C. oreganus helleri and C. scutulatus) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15°C–35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike, and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster, and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here