z-logo
open-access-imgOpen Access
Joint angular excursions during cyclical behaviors differ between tetrapod feeding and locomotor systems
Author(s) -
Michael C. Granatosky,
Eric J. McElroy,
Myra F. Laird,
José Iriarte-Díaz,
Stephen M. Reilly,
Andrea B. Taylor,
Callum F. Ross
Publication year - 2019
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.200451
Subject(s) - tetrapod (structure) , joint (building) , biology , context (archaeology) , anatomy , evolutionary biology , paleontology , structural engineering , engineering
Tetrapod musculoskeletal diversity is usually studied separately in feeding and locomotor systems. However, comparisons between these systems promise important insight into how natural selection deploys the same basic musculoskeletal toolkit - connective tissues, bones, nerves and skeletal muscle - to meet the differing performance criteria of feeding and locomotion. In this study, we compare average joint angular excursions during cyclic behaviors - chewing, walking and running - in a phylogenetic context to explore differences in the optimality criteria of these two systems. Across 111 tetrapod species, average limb-joint angular excursions during cyclic locomotion are greater and more evolutionarily labile than those of the jaw joint during cyclic chewing. We argue that these findings reflect fundamental functional dichotomies between tetrapod locomotor and feeding systems. Tetrapod chewing systems are optimized for precise application of force over a narrower, more controlled and predictable range of displacements, the principal aim being to fracture the substrate, the size and mechanical properties of which are controlled at ingestion and further reduced and homogenized, respectively, by the chewing process. In contrast, tetrapod limbed locomotor systems are optimized for fast and energetically efficient application of force over a wider and less predictable range of displacements, the principal aim being to move the organism at varying speeds relative to a substrate whose geometry and mechanical properties need not become more homogeneous as locomotion proceeds. Hence, the evolution of tetrapod locomotor systems has been accompanied by an increasing diversity of limb-joint excursions, as tetrapods have expanded across a range of locomotor substrates and environments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom