z-logo
open-access-imgOpen Access
Alligator (Alligator mississippiensis) sternal and shoulder girdle mobility increase stride length during high walks
Author(s) -
David B. Baier,
Brigid Garrity,
Sabine Moritz,
Ryan M. Carney
Publication year - 2018
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.186791
Subject(s) - anatomy , shoulder girdle , coracoid , scapula , sternum , pectoral girdle , forelimb , elbow , stride , vertebral column , biology , joint (building) , medicine , physical medicine and rehabilitation , architectural engineering , engineering
Crocodilians have played a significant role in evolutionary studies of archosaurs. Given that several major shifts in forelimb function occur within Archosauria, forelimb morphologies of living crocodilians are of particular importance in assessing locomotor evolutionary scenarios. A previous X-ray investigation of walking alligators revealed substantial movement of the shoulder girdle, but as the sternal cartilages do not show up in X-ray, the source of the mobility could not be conclusively determined. Scapulocoracoid movement was interpreted to indicate independent sliding of each coracoid at the sternocoracoid joint; however, rotations of the sternum could also produce similar displacement of the scapulocoracoids. Here, we present new data employing marker-based XROMM (X-ray reconstruction of moving morphology), wherein simultaneous biplanar X-ray video and surgically implanted radio-opaque markers permit precise measurement of the vertebral axis, sternum and coracoid in walking alligators. We found that movements of the sternum and sternocoracoid joint both contribute to shoulder girdle mobility and stride length, and that the sternocoracoid contribution was less than previously estimated. On average, the joint contributions to stride length (measured with reference to a point on the distal radius, thus excluding wrist motion) are as follows: thoracic vertebral rotation 6.2±3.7%, sternal rotation 11.1±2.5%, sternocoracoid joint 10.1±5.2%, glenohumeral joint 40.1±7.8% and elbow 31.1±4.2%. To our knowledge, this is the first evidence of sternal movement relative to the vertebral column (presumably via rib joints) contributing to stride length in tetrapods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom