z-logo
open-access-imgOpen Access
Heat and humidity induced plastic changes in body lipids and starvation resistance in the tropicalZaprionus indianusof wet - dry seasons
Author(s) -
Thirnahalli Nagaraj Girish,
Eswarappa Pradeep Bulagonda,
Ravi Parkash
Publication year - 2018
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.174482
Subject(s) - acclimatization , humidity , biology , dry season , fecundity , relative humidity , zoology , starvation , dry weight , wet season , botany , ecology , population , endocrinology , physics , demography , sociology , thermodynamics
Insects from tropical wet or dry seasons are likely to cope starvation stress through plastic changes (developmental as well as adult acclimation) in energy metabolites. Control and experimental groups of flies of Zaprionus indianus were reared under wet or dry conditions but adults were acclimated at different thermal or humidity conditions. Adult flies of control group were acclimated at 27°C and low (50% RH) or high (60% RH) humidity. For experimental groups, adult flies were acclimated at 32℃ for 1 to 6 days and under low (40% RH) or high (70% RH). For humidity acclimation, adult flies were acclimated at 27°C but under low (40% RH) or high (70% RH) for 1 to 6 days. Plastic changes in experimental groups as compared to control group (developmental as well as adult acclimation) revealed significant accumulation of body lipids due to thermal or humidity acclimation of wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Starvation resistance and body lipids were higher in the males of dry season but in the females of wet season. Adult acclimation under thermal or humidity conditions exhibited changes in the rate of utilization of body lipids, carbohydrates and proteins. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity; and a reduction in fecundity under starvation. Thus, thermal or humidity acclimation of adults revealed plastic changes in energy metabolites to support starvation resistance of wet or dry seasons flies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here