z-logo
open-access-imgOpen Access
Seasonal changes in the behaviour and respiration physiology of the freshwater duck musselAnodonta anatina.
Author(s) -
Glenn Lurman,
Johanna Walter,
Hans Hoppeler
Publication year - 2013
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.093450
Subject(s) - acclimatization , biology , ecology , respiration , mussel , thermoregulation , zoology , anatomy
For low-energy organisms such as bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation or acclimatization) may be higher than the benefits. We therefore conducted two experiments to examine the effect of seasonal temperature changes on behaviour and oxygen consumption. In the first experiment, we examined the effects of seasonal temperature changes on the freshwater bivalve Anodonta anatina, taking measurements each month for a year at the corresponding temperature for that time of year. There was no evidence for compensation of burrowing valve closure duration or frequency, or locomotory speed. In the second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C, respectively) and found no evidence for compensation of the burrowing rate, valve closure duration or frequency, or oxygen consumption rates during burrowing, immediately after valve closure or at rest. Within the experimental limits of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to either a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom