Role of oxygen consumption in hypoxia protection by translation factor depletion
Author(s) -
Barbara A. Scott,
ChunLing Sun,
Xianrong Mao,
Yu Cong,
Bhupinder P. S. Vohra,
Jeffrey Milbrandt,
C. Michael Crowder
Publication year - 2013
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.082263
Subject(s) - gene knockdown , hypoxia (environmental) , oxygen , biology , microbiology and biotechnology , reactive oxygen species , hypoxia inducible factors , toxicity , protein biosynthesis , translation (biology) , toxicology , chemistry , biochemistry , messenger rna , apoptosis , gene , organic chemistry
The reduction of protein synthesis has been associated with resistance to hypoxic cell death. Which components of the translation machinery control hypoxic sensitivity and the precise mechanism has not been systematically investigated, although a reduction in oxygen consumption has been widely assumed to be the mechanism. Using genetic reagents in Caenorhabditis elegans, we examined the effect on organismal survival after hypoxia of knockdown of 10 factors functioning at the three principal steps in translation. Reduction-of-function of all 10 translation factors significantly increased hypoxic survival to varying degrees, not fully accounted for by the level of translational suppression. Measurement of oxygen consumption showed that strong hypoxia resistance was possible without a significant decrease in oxygen consumption. Hypoxic sensitivity had no correlation with lifespan or reactive oxygen species sensitivity, two phenotypes associated with reduced translation. Resistance to tunicamycin, which produces misfolded protein toxicity, was the only phenotype that significantly correlated with hypoxic sensitivity. Translation factor knockdown was also hypoxia protective for mouse primary neurons. These data show that translation factor knockdown is hypoxia protective in both C. elegans and mouse neurons and that oxygen consumption does not necessarily determine survival; rather, mitigation of misfolded protein toxicity is more strongly associated with hypoxic protection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom