z-logo
open-access-imgOpen Access
Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants
Author(s) -
Fernando J. Guerrieri,
Patrizia d’Ettorre,
JeanMarc Devaud,
Martín Giurfa
Publication year - 2011
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.059170
Subject(s) - term (time) , olfactory system , neuroscience , communication , computer science , psychology , physics , quantum mechanics
Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and non-rewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein synthesis. Here, we addressed this question in the ant Camponotus fellah using a conditioning protocol in which individually harnessed ants learn an association between odour and reward. When the antennae of an ant are stimulated with sucrose solution, the insect extends its maxilla-labium to absorb the solution (maxilla-labium extension response). We differentially conditioned ants to discriminate between two long-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72 h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10 min) or early and late mid-term memories (1 or 12 h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom