z-logo
open-access-imgOpen Access
Wetting properties on nanostructured surfaces of cicada wings
Author(s) -
Mingxia Sun,
Gregory S. Watson,
Yongmei Zheng,
Jolanta A. Watson,
AiPing Liang
Publication year - 2009
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.033373
Subject(s) - wetting , x ray photoelectron spectroscopy , environmental scanning electron microscope , contact angle , nanoscopic scale , materials science , nanostructure , scanning electron microscope , morphology (biology) , nanotechnology , chemical engineering , composite material , biology , engineering , genetics
This study has investigated the wettability of forewings of 15 species of cicadas, with distinctly different wetting properties related to their nanostructures. The wing surfaces exhibited hydrophilic or weak to strong hydrophobic properties with contact angles ranging from 76.8 deg. to 146.0 deg. The nanostructures (protrusions), observed using environmental scanning electron microscopy (ESEM), were classified into four types according to the patterning, diameter (82-148 nm), spacing (44-117 nm) and height (159-446 nm). Surface analysis by X-ray photoelectron spectroscopy (XPS) showed significant differences in wing membrane chemistry. Thus, wetting properties at the macroscopic scale were dependent on slight differences in nanoscale architecture and composition of the wax layer. This investigation offers insights into the diversity of nanostructuring and how subtle small-scale changes may facilitate large changes in wettability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom