Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds
Author(s) -
Herman Pontzer
Publication year - 2007
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.02662
Subject(s) - kinematics , terrestrial locomotion , treadmill , physical medicine and rehabilitation , lower limb , metabolic cost , ground reaction force , simulation , biology , computer science , anatomy , physical therapy , medicine , physics , surgery , classical mechanics
The energy cost of terrestrial locomotion has been linked to the muscle forces generated to support body weight and swing the limbs. The LiMb model predicts these forces, and hence locomotor cost, as a function of limb length and basic kinematic variables. Here, I test this model in humans, goats and dogs in order to assess the performance of the LiMb model in predicting locomotor cost for bipeds and quadrupeds. Model predictions were compared to observed locomotor cost, measured via oxygen consumption, during treadmill trials performed over a range of speeds for both walking and running gaits. The LiMb model explained more of the variation in locomotor cost than other predictors, including contact time, Froude number and body mass. The LiMb model also accurately predicted the magnitude of vertical ground forces. Results suggest the LiMb model reliably links locomotor anatomy to force production and locomotor cost. Further, these data support the idea that limb length may underlie the scaling of locomotor cost for terrestrial animals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom