Dynamics of rapid vertical climbing in cockroaches reveals a template
Author(s) -
Daniel I. Goldman,
Tao S. Chen,
Daniel Dudek,
Robert J. Full
Publication year - 2006
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.02322
Subject(s) - climbing , cockroach , anatomy , dynamics (music) , mechanism (biology) , geometry , geology , biology , physics , mathematics , ecology , paleontology , acoustics , quantum mechanics
Rapid, vertically climbing cockroaches produced climbing dynamics similar to geckos, despite differences in attachment mechanism, ;foot or toe' morphology and leg number. Given the common pattern in such diverse species, we propose the first template for the dynamics of rapid, legged climbing analogous to the spring-loaded, inverted pendulum used to characterize level running in a diversity of pedestrians. We measured single leg wall reaction forces and center of mass dynamics in death-head cockroaches Blaberus discoidalis, as they ascended a three-axis force plate oriented vertically and coated with glass beads to aid attachment. Cockroaches used an alternating tripod gait during climbs at 19.5+/-4.2 cm s(-1), approximately 5 body lengths s(-1). Single-leg force patterns differed significantly from level running. During vertical climbing, all legs generated forces to pull the animal up the plate. Front and middle legs pulled laterally toward the midline. Front legs pulled the head toward the wall, while hind legs pushed the abdomen away. These single-leg force patterns summed to generate dynamics of the whole animal in the frontal plane such that the center of mass cyclically accelerated up the wall in synchrony with cyclical side-to-side motion that resulted from alternating net lateral pulling forces. The general force patterns used by cockroaches and geckos have provided biological inspiration for the design of a climbing robot named RiSE (Robots in Scansorial Environments).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom