z-logo
open-access-imgOpen Access
A novel secreted endonuclease from Culex quinquefasciatussalivary glands
Author(s) -
Eric Calvo,
José M. C. Ribeiro
Publication year - 2006
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.02267
Subject(s) - endonuclease , saliva , biology , culex quinquefasciatus , microbiology and biotechnology , nuclease , dna , salivary gland , recombinant dna , sf9 , biochemistry , complementary dna , restriction enzyme , spodoptera , gene , aedes aegypti , botany , larva
Previous analysis of the salivary gland transcriptome of Culex quinquefasciatus showed the potential presence of an endonuclease with sequence similarities to shrimp, crab and two tsetse salivary proteins. Indeed, not only was the cloned cDNA shown to encode an active double-stranded endonuclease, but also the same activity was demonstrated to be secreted by salivary glands of Cx. quinquefasciatus. Preliminary studies with salivary gland extracts confirmed the presence of a highly active nuclease. This enzyme was shown to be present in the saliva of female mosquitoes by allowing starved mosquitoes to probe DNA-containing agarose gel. The recombinant Cx. quinquefasciatus endonuclease (CuquEndo) produced in mammalian cells showed no sequence specificity for DNA substrate except that it only cleaves double-stranded DNA. Recombinant Cx. quinquefasciatus endonuclease was active in the presence of Mg(2+) ions at pH 7.0-8.0, but no endonuclease activity was detected in the presence of calcium ions. The final hydrolysis products of this enzyme, detected by ion exchange chromatography, yielded DNA fragments ranging form 8-12 base pairs. Although endonucleases have been associated with a variety of cellular functions, their role in mosquito saliva is not clear. This female-specific secreted endonuclease may assist blood meal intake by lowering the local viscosity created by the release of host DNA in the bite site and/or acting as an indirect anticoagulant factor by producing a defibrotide-like mixture of DNA haptamers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom