z-logo
open-access-imgOpen Access
The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach
Author(s) -
Christopher T. Richards
Publication year - 2008
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.019844
Subject(s) - kinematics , thrust , physics , impulse (physics) , ranging , dynamics (music) , angular velocity , mechanics , geology , anatomy , geodesy , biology , classical mechanics , acoustics , thermodynamics
The aims of this study were to explore the hydrodynamic mechanism of Xenopus laevis swimming and to describe how hind limb kinematics shift to control swimming performance. Kinematics of the joints, feet and body were obtained from high speed video of X. laevis frogs (N=4) during swimming over a range of speeds. A blade element approach was used to estimate thrust produced by both translational and rotational components of foot velocity. Peak thrust from the feet ranged from 0.09 to 0.69 N across speeds ranging from 0.28 to 1.2 m s(-1). Among 23 swimming strokes, net thrust impulse from rotational foot motion was significantly higher than net translational thrust impulse, ranging from 6.1 to 29.3 N ms, compared with a range of -7.0 to 4.1 N ms from foot translation. Additionally, X. laevis kinematics were used as a basis for a forward dynamic anuran swimming model. Input joint kinematics were modulated to independently vary the magnitudes of foot translational and rotational velocity. Simulations predicted that maximum swimming velocity (among all of the kinematics patterns tested) requires that maximal translational and maximal rotational foot velocity act in phase. However, consistent with experimental kinematics, translational and rotational motion contributed unequally to total thrust. The simulation powered purely by foot translation reached a lower peak stroke velocity than the pure rotational case (0.38 vs 0.54 m s(-1)). In all simulations, thrust from the foot was positive for the first half of the power stroke, but negative for the second half. Pure translational foot motion caused greater negative thrust (70% of peak positive thrust) compared with pure rotational simulation (35% peak positive thrust) suggesting that translational motion is propulsive only in the early stages of joint extension. Later in the power stroke, thrust produced by foot rotation overcomes negative thrust (due to translation). Hydrodynamic analysis from X. laevis as well as forward dynamics give insight into the differential roles of translational and rotational foot motion in the aquatic propulsion of anurans, providing a mechanistic link between joint kinematics and swimming performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom