A single control system for smooth and saccade-like pursuit in blowflies
Author(s) -
Norbert Boeddeker,
Martin Egelhaaf
Publication year - 2005
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.01558
Subject(s) - smooth pursuit , saccade , gaze , saccadic masking , context (archaeology) , eye movement , psychology , artificial intelligence , computer science , computer vision , communication , neuroscience , biology , paleontology
During courtship, male blowflies perform aerobatic pursuits that rank among the fastest visual behaviours that can be observed in nature. The viewing strategies during pursuit behaviour of blowflies appear to be very similar to eye movements during pursuit in primates: a combination of smooth pursuit and catch-up saccades. Whereas in primates these two components of pursuit eye movements are thought to be controlled by distinct oculomotor subsystems, we present evidence that in blowflies both types of pursuit responses can be produced by a single control system. In numerical simulations of chasing behaviour the proposed control system generates qualitatively the same behaviour as with real blowflies. As a consequence of time constants in the control system, mimicking neuronal processing times, muscular dynamics and inertia, saccade-like changes in gaze direction are generated if the target is displaced rapidly on the pursuing fly's retina. In the behavioural context of visual pursuit, saccade-like changes of the fly's gaze direction can thus be parsimoniously explained as an emergent property of a smooth pursuit system without assuming a priori different mechanisms underlying smooth and saccadic tracking behaviour.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom