Physiological and biochemical traits correlate with differences in growth rate and temperature adaptation among groups of the eastern oysterCrassostrea virginica
Author(s) -
Fabrice Pernet,
Réjean Tremblay,
Iften Redjah,
JeanMarie Sévigny,
Chantal Gionet
Publication year - 2008
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.014639
Subject(s) - intraspecific competition , biology , degree of unsaturation , crassostrea , acclimatization , eastern oyster , growth rate , zoology , clearance rate , ostreidae , oyster , ecology , biochemistry , shellfish , aquatic animal , fishery , chemistry , fish <actinopterygii> , geometry , mathematics , organic chemistry , endocrinology
We tested two hypotheses in this study: first, that intraspecific growth variations in a marine bivalve are correlated with physiological (basal metabolic rate and scope for growth) and biochemical (membrane lipids) characteristics, and, second, that this bivalve shows intraspecific variations in physiological and biochemical adaptations to temperature. To test these hypotheses, five genetically distinct groups of juvenile oysters Crassostrea virginica that showed differences in their growth rates were maintained in the laboratory (1) for further measurements of growth and standard metabolic rates and (2) subjected to acclimation at 4 degrees C, 12 degrees C and 20 degrees C and further examined for scope for growth and determination of membrane lipid composition. Our results show that a lower basal metabolic rate and lower unsaturation index of membrane lipids coincides with higher growth rates and a higher scope for growth in oysters. We provide evidence that intraspecific differences in basal metabolic rate in oysters are related to membrane unsaturation as predicted by Hulbert's theory of membranes as metabolic pacemakers. Furthermore, our results suggest that the theory of membranes as metabolic pacemakers is related to intraspecific differences in growth. A perfect negative relationship was observed between the acclimation temperature and the unsaturation index of membrane lipids in oysters, as predicted by the homeoviscous adaptation theory. However, changes in the unsaturation index in response to temperature were mainly due to variations in the eicosapentaenoic (20:5n-3) fatty acid in fast-growing oysters, whereas slow-growing animals changed both docosahexaenoic acid (22:6n-3) and 20:5n-3. Thus, the pattern of biochemical compensation in response to temperature in this species shows intraspecific variation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom