Intracellular calcium and survival of tadpole forebrain cells in anoxia
Author(s) -
Michael S. Hedrick,
Christian S. Fahlman,
Philip E. Bickler
Publication year - 2005
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.01436
Subject(s) - tadpole (physics) , forebrain , intracellular , biology , calcium , calcium in biology , zoology , microbiology and biotechnology , neuroscience , medicine , physics , central nervous system , particle physics
The frog brain survives hypoxia with a slow loss of energy charge and ion homeostasis. Because hypoxic death in most neurons is associated with increases in intracellular calcium ([Ca2+]i), we examined the relationship between [Ca2+]i and survival of a mixed population of isolated cells from the forebrain of North American bullfrog Rana catesbeiana tadpoles. Forebrain cells from stage V-XV tadpoles were isolated by enzymatic digestion and loaded with one of three different calcium indicators (Fura-2, Fura 2-FF and BTC) to provide estimates of [Ca2+]i accurate at low and high [Ca2+]i. Propidium iodide (PI) fluorescence was used as an indicator of cell viability. Cells were exposed to anoxia (100% N2) and measurements of [Ca2+]i and cell survival made from 1 h to 18 h. Intracellular [Ca2+] increased significantly after 3-6 h anoxia (P<0.05), regardless of the type of Ca2+ indicator used; however, there were substantial differences in the measurements of [Ca2+]i with the different indicators, reflecting their varying affinities for Ca2+. Resting [Ca2+]i was approximately 50 nmol l(-1) and increased to about 9-30 micromol l(-1) after 4-6 h anoxia. The significant increase in [Ca2+]i during anoxia was not associated with significant increases in cell death, with 85-95% survival over this time period. Cells exposed to anoxia for 18 h, or those made anoxic for 4-6 and reoxygenated for 12 h to 16 h, had survival rates greater than 70%, but survival was significantly less than normoxic controls. These results indicate that large increases in [Ca2+]i are not necessarily associated with hypoxic cell death in vertebrate brain cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom