Walking on inclines: energetics of locomotion in the antCamponotus
Author(s) -
Alexandra Lipp,
Harald Wolf,
FritzOlaf Lehmann
Publication year - 2005
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.01434
Subject(s) - respirometry , energetics , metabolic rate , allometry , respirometer , preferred walking speed , basal metabolic rate , zoology , metabolic cost , terrestrial locomotion , ant , ecology , environmental science , biology , anatomy , physical medicine and rehabilitation , respiration , medicine , physiology , biochemistry , endocrinology
To assess energetic costs during rest and locomotion in a small insect, we measured metabolic rate in freely moving ants Camponotus sp. (average body mass 11.9 mg). The animals ran in a straight respirometric chamber in which locomotor speed and CO2 release were monitored simultaneously using flow-through respirometry and conventional video analysis. In resting intact ants, standard metabolic rate was on average 0.32 ml CO2 g(-1) body mass h(-1). During walking, the ants breathed continuously and metabolic rate increased between 4.3 times (level walking at 0-5 mm s(-1)) and 6.9 times (30 degrees ascent at 85-95 mm s(-1)) over resting rates. Metabolic rate increased linearly with increasing walking speed but superficially leveled off beyond speeds of about 70 mm s(-1). Walking on incline (uphill) or decline slopes (downhill) of up to 60 degrees had only a small effect on energy consumption compared to level walking. During slope walking, total metabolic rate averaged over all running speeds ranged from a minimum of 1.55+/-0.4 (horizontal running) to a maximum of 1.89+/-0.7 ml CO2 h(-1) g(-1) body mass (30 degrees downhill). The mean cost of transport in Camponotus was approximately 130 J g(-1) km(-1). The metabolic requirements in the comparatively small insect Camponotus for walking were mostly in the range expected from data obtained from other insects and small poikilotherms, and from allometric scaling laws.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom