z-logo
open-access-imgOpen Access
Dietary sugar as a direct fuel for flight in the nectarivorous bat Glossophaga soricina
Author(s) -
Kenneth C. Welch,
L. Gerardo Herrera M.,
Raul K. Suarez
Publication year - 2008
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.012252
Subject(s) - sugar , biology , sucrose , zoology , food science
It is thought that the capacity of mammals to directly supply the energetic needs of exercising muscles using recently ingested fuels is limited. Humans, for example, can only fuel about 30%, at most, of exercise metabolism with dietary sugar. Using indirect calorimetry, i.e. measurement of rates of O(2) consumption and CO(2) production, in combination with carbon stable isotope techniques, we found that nectarivorous bats Glossophaga soricina use recently ingested sugars to provide approximately 78% of the fuel required for oxidative metabolism during their energetically expensive hovering flight. Among vertebrate animals, only hummingbirds exceed the capacity of these nectarivorous bats to fuel exercise with dietary sucrose. Similar experiments performed on Anna's (Calypte anna) and rufous (Selasphorus rufus) hummingbirds show that they use recently ingested sugars to support approximately 95% of hovering metabolism. These results support the suggestion that convergent evolution of physiological and biochemical traits has occurred among hovering nectarivorous animals, rendering them capable of a process analogous to aerial refueling in aircraft.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom