z-logo
open-access-imgOpen Access
Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina)mitochondria exposed to acute temperature changes
Author(s) -
Martina Keller,
Angela Sommer,
HansOtto Pörtner,
Doris Abele
Publication year - 2004
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.01050
Subject(s) - arenicola , catalase , reactive oxygen species , biology , mitochondrion , cellular respiration , acclimatization , mitochondrial ros , intertidal zone , superoxide dismutase , respiration , ecology , biochemistry , antioxidant , botany
The influence of seasonal and acute temperature changes on mitochondrial functions were studied in isolated mitochondria of the eurythermal lugworm Arenicola marina (Polychaeta), with special emphasis on the interdependence of membrane potential and radical production. Acclimatisation of lugworms to pre-spawning/summer conditions is associated with rising mitochondrial substrate oxidation rates, higher proton leakage rates, elevated membrane potentials, and increased production of reactive oxygen species (ROS) in isolated mitochondria, compared with mitochondria from winter animals. However, a high ROS production was compensated for by higher activities of the antioxidant enzymes catalase and superoxide dismutase, as well as lower mitochondrial densities in summer compared with winter animals. In summer animals, a higher sensitivity of the proton leakage rate to changes of membrane potential will confer better flexibility for metabolic regulation (mild uncoupling) in response to temperature change. These seasonal alterations in mitochondrial functions suggest modifications of energy metabolism in eurythermal and euryoxic organisms on intertidal mudflats during summer. In winter, low and less changeable temperatures in intertidal sedimentary environments permit higher respiratory efficiency at low aerobic metabolic rates and lower membrane potentials in A. marina mitochondria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom