Mechanical energy in toddler gait A trade-off between economy and stability?
Author(s) -
Ann Hallemans,
Peter Aerts,
Bert Otten,
Peter Paul De Deyn,
Dirk De Clercq
Publication year - 2004
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.01040
Subject(s) - work (physics) , gait , mechanical energy , toddler , lift (data mining) , kinetic energy , inverted pendulum , energy expenditure , energy (signal processing) , physical medicine and rehabilitation , swing , pendulum , gait cycle , mathematics , psychology , physics , simulation , statistics , computer science , developmental psychology , kinematics , medicine , classical mechanics , thermodynamics , power (physics) , nonlinear system , quantum mechanics , acoustics , data mining , endocrinology
Mechanical energy expenditure was investigated in children who are just learning to walk and compared with adult mechanical energy expenditure during walking. First, we determined whether the inverted pendulum (IP) mechanism of energy exchange was present in toddlers. It seems that new walkers partially make use of this energy saving mechanism, but it is less efficient than in adults. The reduced recovery values (R=40% at optimal speeds in toddlers compared to 70% in adults) can be explained by their low self-selected walking speed in combination with their tossing gait (large vertical oscillations of the body) and by the observation that during as much as 25-50% of the gait cycle kinetic and potential energy are oscillating in-phase. The second step was to calculate positive external mechanical work (Wext). Since the IP mechanism is less efficient in toddlers, more mass-specific positive work has to be performed to lift and accelerate the centre of mass than in adults walking at the same speed, even when differences in body size are taken into account. The amount of positive internal work (Wint,k) necessary to move the body segments relative to the centre of mass was the third parameter we calculated. In toddlers Wint,k is largely determined by the kinetic energy of the lower limb. Compared to adults, toddlers have to perform less mass-specific work per unit distance to accelerate the body segments since the upper body is kept relatively stiff during walking and there is no arm swing. Apart from work performed on the centre of mass and work performed to move the body segments relative to the centre of mass, when walking some work is also performed during double contact as both legs are pushing against each other. Two methods were used to calculate this amount of work, both leading to the same conclusions. Mass-specific work during double contact is small in toddlers compared to adults because of their low walking speed. Finally the total amount of mechanical work performed in toddlers was compared to the work production observed in adults. Wext seems to be the major determinant for total mechanical energy expenditure. At intermediate froude numbers work production is comparable between adults and toddlers, but at low and high froude numbers Wtot increases due to the steep increases in Wext. Despite the fact that mechanical work requirements in toddler gait are underestimated if work during double contact is not taken into account, it is not a major determinant of the energy cost of walking.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom