z-logo
open-access-imgOpen Access
β-naphthoflavone induction of CYP1A in brain of juvenile lake trout(Salvelinus namaycush Walbaum)
Author(s) -
YuWen ChungDavidson,
Christopher B. Rees,
Hong Wu,
SangSeon Yun,
Weiming Li
Publication year - 2004
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00919
Subject(s) - trout , biology , messenger rna , cytochrome p450 , juvenile fish , juvenile , in situ hybridization , zoology , endocrinology , fish <actinopterygii> , ecology , fishery , metabolism , gene , biochemistry
Many environmental pollutants induce expression of the cytochrome P450 (CYP) 1A subfamily of genes. We integrated cellular and molecular biological techniques to examine the effects of beta-naphthoflavone (BNF) exposure in lake trout brain CYP1A distribution and dynamics. Over a 32-day time-course, real time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) results showed that CYP1A mRNA induction in response to BNF exposure occurred rapidly and continued to rise in the BNF-treated lake trout after 4 h, with a peak at or after 2 days. Messenger RNA levels fell after 4 days, and this trend continued after 16 days of exposure. In situ hybridization indicated that CYP1A mRNA was universally elevated in the brain of BNF-exposed fish and was mainly expressed in the endothelia and occasionally in the glial cells. CYP1A immunoreactivity was induced in the olfactory bulb and valvula cerebelli of BNF-treated fish. Other brain areas showed constitutive CYP1A immunoreactivity in both control and BNF-treated fish. Some BNF-treated fish contained multifocal hemorrhages in the brain tissue, and these fish had overall depressed CYP1A immunoreactivity in the brain. The relationship between transcriptional and translational effects of BNF exposure in the brain of juvenile lake trout is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom