z-logo
open-access-imgOpen Access
Resetting the path integrator: a basic condition for route-based navigation
Author(s) -
Ariane S. Etienne,
Roland Maurer,
Valérie Boulens,
Arik Lévy,
Tiffany Rowe
Publication year - 2004
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00906
Subject(s) - path integration , reset (finance) , computer science , landmark , position (finance) , communication , computer vision , compass , sensory cue , path (computing) , artificial intelligence , psychology , geography , cartography , finance , financial economics , economics , programming language
During short excursions away from home, some mammals are known to update their position with respect to their point of departure through path integration (dead reckoning) by processing internal (idiothetic) signals generated by rotations and translations. Path integration (PI) is a continuously ongoing process in which errors accumulate. To remain functional over longer excursions, PI needs to be reset through position information from stable external references. We tested the homing behaviour of golden hamsters (Mesocricetus auratus W.) during hoarding excursions following a rotation of the arena and nest. In continuous darkness, the hamsters returned to their point of departure at the rotated nest, and therefore depended on PI only. In other trials, the animals were briefly presented with visual room cues during or at the end of the outward trip, visual cues being pitted by 67 degrees or 98 degrees against the animal's current self-generated position vector. After a fix, the animals headed for the usual (unrotated) nest location, as defined by room cues, independent of the timing of the fix. These results were obtained in two different geometrical settings and showed that, after the fix, the animals update their position, and not merely their head direction or internal compass, in a new reference frame. Thus, episodic fixes on familiar external references reset the PI and therefore greatly enhance the functional signification of navigation that is based on feedback information from locomotion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom