z-logo
open-access-imgOpen Access
The occurrence of two types of hemopexin-like protein in medaka and differences in their affinity to heme
Author(s) -
Makoto Hirayama,
Atsushi Kobiyama,
Shigeharu Kinoshita,
Shugo Watabe
Publication year - 2004
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00897
Subject(s) - hemopexin , histidine , biology , complementary dna , heme , affinity chromatography , hemin , microbiology and biotechnology , amino acid , biochemistry , messenger rna , gene , enzyme
Full-length cDNA clones encoding two types of hemopexin-like protein, mWap65-1 and mWap65-2, were isolated from the HNI inbred line of medaka Oryzias latipes. The deduced amino acid sequence of mWap65-2 resembled mammalian hemopexins more closely than that of mWap65-1. Histidine residues required for the high affinity of hemopexins for hemes were conserved in mWap65-2, but not in mWap65-1. Surprisingly, mWap65-1, but not mWap65-2, showed heme-binding ability as revealed by hemin-agarose affinity chromatography, even though mWap65-1 lacked the essential histidine residues. Furthermore, RT-PCR analysis of different tissues demonstrated that the transcripts of mWap65-2 were restricted to liver, whereas those of mWap65-1 were found in various tissues including liver, eye, heart and brain. Quantitative RT-PCR revealed that transcripts of mWap65-2 were expressed earlier than those of mWap65-1 during ontogeny. However, the accumulated mRNA levels of both mWap65-1 and mWap65-2 did not differ significantly in fish acclimated to either 10 degrees C or 30 degrees C for 5 weeks. These characteristics suggest that the two proteins have different physiological functions and that mWap65-2 is not a hemopexin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom