z-logo
open-access-imgOpen Access
Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalisL.)
Author(s) -
Tsyr-Huei Chiou,
Lydia M. Mäthger,
Roger T. Hanlon,
Thomas W. Cronin
Publication year - 2007
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.006932
Subject(s) - cuttlefish , sepia , optics , polarization (electrochemistry) , loligo , squid , pleochroism , cephalopod , polarized light microscopy , physics , biology , officinalis , chemistry , paleontology , mineral , ecology , botany
On every arm of cuttlefish and squid there is a stripe of high-reflectance iridophores that reflects highly polarized light. Since cephalopods possess polarization vision, it has been hypothesized that these polarized stripes could serve an intraspecific communication function. We determined how polarization changes when these boneless arms move. By measuring the spectral and polarizing properties of the reflected light from samples at various angles of tilt and rotation, we found that the actual posture of the arm has little or no effect on partial polarization or the e-vector angle of the reflected light. However, when the illumination angle changed, the partial polarization of the reflected light also changed. The spectral reflections of the signals were also affected by the angle of illumination but not by the orientation of the sample. Electron microscope samples showed that these stripes are composed of several groups of multilayer platelets within the iridophores. The surface normal to each group is oriented at a different angle, which produces essentially constant reflection of polarized light over a range of viewing angles. These results demonstrate that cuttlefish and squid could send out reliable polarization signals to a receiver regardless of arm orientation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom