z-logo
open-access-imgOpen Access
Photobehavior of stony corals: responses to light spectra and intensity
Author(s) -
Oren Levy,
Zvy Dubinsky,
Yair Achituv
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00622
Subject(s) - tentacle (botany) , zooxanthellae , stylophora pistillata , biology , coral , cnidaria , coelenterata , botany , ecology , symbiosis , paleontology , bacteria
Tentacle expansion and contraction were investigated in four zooxanthellate coral species and one azooxanthellate coral (Cladopsammia gracilis). Favia favus, Plerogyra sinuosa and Cladopsammia gracilis expand their tentacles at night, while tentacles in Goniopora lobata and Stylophora pistillata are expanded continuously. Light at wavelengths in the range 400-520 nm was most effective in eliciting full tentacle contraction in F. favus and in P. sinuosa. Higher light intensities in the range 660-700 nm also caused tentacle contractions in F. favus. Tentacles in C. gracilis did not respond to light. Zooxanthellar densities in tentacles were significantly higher in G. lobata, which has continuously expanded tentacles, than in F. favus and P. sinousa, where tentacles are expanded at night. Photosynthetic efficiency in F. favus and P. sinuosa was lower in specimens with contracted tentacles. However, in the dark, no differences were found in the maximum quantum yield of photochemistry in PSII (Fv/Fm) of the expanded versus the contracted tentacles of any of the four species. This work suggests that species whose tentacles remain continuously expanded have either dense algal populations in their tentacles, as in G. lobata, or minute tentacles, like S. pistillata. Dense algal populations in tentacles allow harvesting of light while small tentacles do not scatter light or shade zooxanthellae in the underlying body of the polyp.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom