z-logo
open-access-imgOpen Access
Mechanical properties of rat soleus aponeurosis and tendon during variable recruitmentin situ
Author(s) -
Ryan J. Monti,
Roland R. Roy,
Hui Zhong,
V. Reggie Edgerton
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00550
Subject(s) - aponeurosis , tendon , anatomy , in vivo , soleus muscle , strain (injury) , biomedical engineering , contraction (grammar) , biophysics , stiffness , in situ , materials science , muscle belly , chemistry , biology , skeletal muscle , medicine , composite material , endocrinology , microbiology and biotechnology , organic chemistry
The in vitro mechanical properties of tendons are well described, whereas little data exist for conditions mimicking those found in vivo. Descriptions of the in situ mechanical properties of aponeuroses are more common, but the results are variable. Our goal was to examine the mechanical properties of these tissues under conditions mimicking the in vivo state. Tissue strains were measured in the rat (Rattus norvegicus) soleus muscle directly from the spacing of metal markers implanted within the tissues of interest using an X-ray video microscope. Strains were measured for the tendon and three regions (proximal, middle and distal) of the aponeurosis. Muscle stimulation was accomplished through isolated ventral rootlets, allowing force to be graded in seven repeatable increments independent of muscle-tendon unit length. Peak strains (during maximal tetanic contraction at optimum length; P(o)) were approximately 5% in tendon and approximately 12% in all regions of the aponeurosis. At forces above 50% of P(o), tissue stiffness was nearly constant in all regions, and a pronounced toe region was observed only at forces below approximately 25% of P(o). Stiffness increased in all regions as the muscle-tendon unit was lengthened. These results suggest that using mechanical properties measured ex vivo or during single contractile events in situ to estimate the in vivo behavior of tendon and aponeurosis may lead to errors in estimating the distribution of strain among the contractile and series elastic elements of the muscle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom