Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function
Author(s) -
Johanna A. Kolodziejski,
Sara E. Sanford,
G. Troy Smith
Publication year - 2007
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.005272
Subject(s) - electric fish , courtship , chirp , electric organ , biology , stimulus (psychology) , neuroscience , communication , function (biology) , signal (programming language) , courtship display , fish <actinopterygii> , psychology , physics , zoology , evolutionary biology , cognitive psychology , computer science , receptor , laser , biochemistry , torpedo , acetylcholine receptor , fishery , optics , programming language
During social interactions, apteronotid electric fish modulate their electric organ discharges (EODs) to produce transient communication signals known as chirps. Chirps vary widely across species and sex in both number and structure. In Apteronotus leptorhynchus, males chirp far more than females and their chirps have greater frequency modulation than those of females. High-frequency chirps are produced by males most often in response to female-like electric signals. As such, they have been hypothesized to function in courtship. The more common low-frequency chirps, produced by both males and females in response to same-sex signals, are hypothesized to function as aggressive signals. To determine whether the two chirp types in the closely related Apteronotus albifrons have similar functions, we stimulated chirping in male and female A. leptorhynchus and A. albifrons with playbacks simulating the EODs of same-sex versus opposite-sex conspecifics. As in A. leptorhynchus, male and female A. albifrons produced low-frequency chirps most often to same-sex signals. Unlike A. leptorhynchus, however, A. albifrons also produced more high-frequency chirps to same-sex stimuli than to opposite-sex stimuli. This suggests that high-frequency chirps in A. albifrons, unlike those in A. leptorhynchus, may not function as courtship signals and that the function of similar chirp types has diversified in Apteronotus. Examples such as this, in which the function of a communication signal has changed in closely related species, are rare. The electrocommunication signals of apteronotids may thus provide a remarkable opportunity to investigate the evolutionary interactions of signal structure and function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom