z-logo
open-access-imgOpen Access
Molecular characterisation of the smooth endoplasmic reticulum Ca2+-ATPase ofPorcellio scaberand its expression in sternal epithelia during the moult cycle
Author(s) -
Monica Hagedorn,
Dirk Weihrauch,
David W. Towle,
Andreas Ziegler
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00380
Subject(s) - serca , endoplasmic reticulum , biology , microbiology and biotechnology , calcium atpase , thapsigargin , calcium , transcellular , atpase , biochemistry , medicine , enzyme
The anterior sternal epithelial cells of the terrestrial isopod Porcellio scaber transport large amounts of calcium during the formation and resorption of intermittent calcium carbonate deposits. Recent investigations on epithelia involved in mineralisation processes suggest a role of the smooth endoplasmic reticulum Ca(2+)-ATPase (SERCA) in transcellular calcium transport. We present the first molecular characterisation of a SERCA within a crustacean mineralising epithelium. We cloned the SERCA from a cDNA library of the anterior sternal epithelium and used in situ hybridisation to compare the expression of the SERCA mRNA between three different moulting stages. The full-length SERCA cDNA has an open reading frame of 3006 nucleotides. The deduced 1002 amino-acid polypeptide has a predicted molecular mass of 109.7 kDa and 87% identity to the SERCA of Procambarus clarkii axial muscle isoform. In situ hybridisation confirmed expression within the anterior sternal epithelium and revealed an increase in SERCA mRNA abundance from the non-transporting, early premoult stage to the calcium transporting, late premoult and intramoult stage. The results support previous indications of a contribution by the smooth endoplasmic reticulum to transcellular calcium transport and suggest a transcriptional regulation of SERCA activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom