z-logo
open-access-imgOpen Access
Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus
Author(s) -
JeanLuc Perret,
Patrick M. Guérin,
Peter A. Diehl,
Michèle Vlimant,
Lise Gern
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00345
Subject(s) - ixodes ricinus , ricinus , darkness , biology , nymph , tick , desiccation , saturation (graph theory) , duration (music) , zoology , ecology , botany , physics , mathematics , combinatorics , acoustics
The behaviour of Ixodes ricinus nymphs was recorded in 10-day experiments using computer-assisted video-tracking, in the absence of any host stimuli. These ticks switch spontaneously from questing in a desiccating atmosphere to quiescence in a water-saturated atmosphere after dark. Quantification of both questing and quiescence duration demonstrates that questing duration is inversely related to saturation deficit whereas quiescence duration is not. Distance walked after quiescence increased with desiccating conditions, while the distance walked after questing remained unchanged. Almost all locomotor activities of I. ricinus occurred during darkness under either a 14 h:10 h L:D or a 8 h:4 h L:D cycle. We established that all life stages of I. ricinus are equipped to sense shifts in light intensity with bilaterally placed strings of photoreceptors. This permits I. ricinus to use onset of darkness to trigger mobility when desiccation risk is reduced in nature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom