Comparative equilibrium mechanical properties of bovine and lamprey cartilaginous tissues
Author(s) -
HaydenWilliam Courtland,
Glenda M. Wright,
Robert G. Root,
M. Edwin DeMont
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00264
Subject(s) - lamprey , cartilage , anatomy , matrix (chemical analysis) , extracellular matrix , tension (geology) , chemistry , compression (physics) , biology , materials science , chromatography , biochemistry , composite material , fishery
In contrast to all other vertebrate cartilages, the major extracellular matrix protein of lamprey cartilages is not collagen. Instead, there exists a unique family of noncollagenous structural proteins, the significance of which is not completely understood. A custom-built uniaxial testing apparatus was used to quantify and compare equilibrium stress-relaxation behavior (equilibrium moduli, stress decay behavior, recovery times and relaxation times) of (1) lamprey pericardial cartilages with perichondria tested in tension (young adult and aged), (2) annular cartilages without perichondria tested in compression (young adult and aged) and (3) bovine auricular cartilage samples without perichondria tested in both tension and compression. Results of this study demonstrated that all cartilages were highly viscoelastic but with varying relaxation times; approximately 120 min for annular and pericardial cartilages and 30 min for bovine auricular cartilages. For mean equilibrium moduli, young adult lamprey annular cartilages (0.71 MPa) and pericardial cartilages (2.87 MPa) were found to be statistically different. The mean moduli of all bovine auricular cartilages were statistically identical to lamprey cartilages except in the case of aged adult pericardial cartilages, which were statistically larger than all other cartilages at 4.85 MPa. Taken together, the results of this study suggest that lamprey cartilages are able to exhibit mechanical properties largely similar to those of mammalian cartilages despite unique structural proteins and differences in extracellular matrix organization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom