z-logo
open-access-imgOpen Access
Honeybee navigation: properties of the visually driven `odometer'
Author(s) -
Aung Si,
Mandyam V. Srinivasan,
Shaowu Zhang
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00236
Subject(s) - odometer , artificial intelligence , computer vision , signal (programming language) , computer science , contrast (vision) , remote sensing , geography , programming language
Recent work has revealed that honeybees determine distance flown by gauging the extent to which the image of the environment moves in the eye as they fly toward their destination. Here we examine the properties of this visually driven 'odometer', by training bees to fly to a feeder in a tunnel lined with a range of different visual patterns, and analysing their dances when they return to the hive. We find that the odometric signal is relatively unaffected by variations in the contrast and spatial frequency content of the patterns. Furthermore, a strong signal is generated even when the walls or the floor of the tunnel provide only weak optic-flow cues. Thus, distance flown is measured by a visually driven odometer that is surprisingly robust to variations in the texture or sparseness of the visual environment through which the bee flies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom