z-logo
open-access-imgOpen Access
Involvement of Gq/11 in signal transduction in the mammalian vomeronasal organ
Author(s) -
Kennedy S. Wekesa,
Stephanie Miller,
Audrey Napier
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00174
Subject(s) - vomeronasal organ , g protein , biology , pertussis toxin , receptor , signal transduction , endocrinology , medicine , stimulation , microbiology and biotechnology , sex pheromone , biochemistry , zoology
Social behaviors of most mammals are profoundly affected by pheromones. Pheromones are detected by G-protein coupled receptors in the vomeronasal organ (VNO). To investigate the role of G alpha(q/11) in vomeronasal signal transduction pathways, microvillar membranes from murine VNO were prepared. Incubation of such membranes from prepubertal females with adult male urine results in an increase in production of inositol-(1,4,5)-trisphosphate (IP(3)). This stimulation is mimicked by GTP gamma S, blocked by GDP beta S and is tissue specific. Furthermore, use of bacterial toxins such as pertussis that lead to ADP-ribosylation of the G-protein alpha subunits of G(o) and G(i2) do not block the increase in IP(3) levels but U-73122, a PLC inhibitor, blocks the production of IP(3). Studies with monospecific antibodies revealed the presence of three G-proteins, G alpha(o), G alpha(i2) and G alpha(q/11)-related protein, in vomeronasal neurons, concentrated on their microvilli. Our observations indicate that pheromones in male urine act on vomeronasal neurons in the female VNO via a receptor-mediated, G alpha(q/11)-protein-dependent increase in IP(3) levels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom