Cloning of a muscle-specific calpain from the American lobster Homarus americanus: expression associated with muscle atrophy and restoration during moulting
Author(s) -
Xiaoli Yu,
Donald L. Mykles
Publication year - 2003
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.00097
Subject(s) - biology , complementary dna , microbiology and biotechnology , gene isoform , homarus , peptide sequence , biochemistry , open reading frame , gene , crustacean , ecology
A cDNA (1977 bp) encoding a crustacean calpain (Ha-CalpM; GenBank accession no. AY124009) was isolated from a lobster fast muscle cDNA library. The open reading frame specified a 575-amino acid (aa) polypeptide with an estimated mass of 66.3 kDa. Ha-CalpM shared high identity with other calpains in the cysteine proteinase domain (domain II; aa 111-396) and domain III (aa 397-575), but most of the N-terminal domain (domain I; aa 1-110) was highly divergent. Domain II contained the cysteine, histidine and asparagine triad essential for catalysis, as well as two conserved aspartate residues that bind Ca(2+). In domain III an acidic loop in the C2-like region, which mediates Ca(2+)-dependent phospholipid binding, had an expanded stretch of 17 aspartate residues. Ha-CalpM was classified as a non-EF-hand calpain, as it lacked domain IV, a calmodulin-like region containing five EF-hand motifs. Northern blot analysis, relative reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR showed that Ha-CalpM was highly expressed in skeletal muscles, but at much lower levels in heart, digestive gland, intestine, integument, gill, nerve cord/thoracic ganglion and antennal gland. An antibody raised against a unique N-terminal sequence recognized a 62 kDa isoform in cutter claw and crusher claw closer muscles and a 68 kDa isoform in deep abdominal muscle. Ha-CalpM was distributed throughout the cytoplasm, as well as in some nuclei, of muscle fibers. Purification of Ha-CalpM showed that the 62 kDa and 68 kDa isoforms co-eluted from gel filtration and ion exchange columns at positions consistent with those of previously described Ca(2+)-dependent proteinase III (CDP III; 59 kDa). Ha-CalpM mRNA and protein did not change during the moulting cycle. The muscle-specific expression of Ha-CalpM and the ability of Ha-CalpM/CDP III to degrade myofibrillar proteins suggest that it is involved in restructuring and/or maintaining contractile structures in crustacean skeletal muscle.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom