z-logo
open-access-imgOpen Access
me31B regulates stem cell homeostasis by preventing excess dedifferentiation in the Drosophila male germline
Author(s) -
Lindy Jensen,
Zsolt Venkei,
George J. Watase,
Bitarka Bisai,
Scott D. Pletcher,
ChengYu Lee,
Yukiko Yamashita
Publication year - 2021
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.258757
Subject(s) - biology , stem cell , germline , microbiology and biotechnology , regulator , adult stem cell , homeostasis , cellular differentiation , population , genetics , gene , demography , sociology
Tissue-specific stem cells maintain tissue homeostasis by providing a continuous supply of differentiated cells throughout the life of organisms. Differentiated/differentiating cells can revert back to a stem cell identity via dedifferentiation to help maintain the stem cell pool beyond the lifetime of individual stem cells. Although dedifferentiation is important for maintaining the stem cell population, it is speculated that it underlies tumorigenesis. Therefore, this process must be tightly controlled. Here, we show that a translational regulator, me31B, plays a critical role in preventing excess dedifferentiation in the Drosophila male germline: in the absence of me31B, spermatogonia dedifferentiate into germline stem cells (GSCs) at a dramatically elevated frequency. Our results show that the excess dedifferentiation is likely due to misregulation of nos, a key regulator of germ cell identity and GSC maintenance. Taken together, our data reveal negative regulation of dedifferentiation to balance stem cell maintenance with differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom