z-logo
open-access-imgOpen Access
Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss
Author(s) -
Tatiana Burrinha,
Isak Martinsson,
Ricardo A. Gomes,
Ana Paula Terrasso,
Gunnar K. Gouras,
Cláudia G. Almeida
Publication year - 2021
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.255752
Subject(s) - endocytosis , downregulation and upregulation , endocytic cycle , biology , synapse , microbiology and biotechnology , neuroscience , endosome , clathrin , amyloid (mycology) , intracellular , cell , biochemistry , botany , gene
Neuronal aging increases the risk of late-onset Alzheimer's disease. During normal aging, synapses decline, and β-amyloid (Aβ) accumulates intraneuronally. However, little is known about the underlying cell biological mechanisms. We studied neuronal aging using normal-aged brain and aged mouse primary neurons that accumulate lysosomal lipofuscin and show synapse loss. We identified the upregulation of amyloid precursor protein (APP) endocytosis as a neuronal aging mechanism that potentiates APP processing and Aβ production in vitro and in vivo. The increased APP endocytosis may contribute to the early endosome enlargement observed in the aged brain. Mechanistically, we showed that clathrin-dependent APP endocytosis requires F-actin and that clathrin and endocytic F-actin increase with neuronal aging. Finally, Aβ production inhibition reverts synaptic decline in aged neurons, whereas Aβ accumulation, promoted by endocytosis upregulation in younger neurons, recapitulates aging-related synapse decline. Overall, we identify APP endocytosis upregulation as a potential mechanism of neuronal aging and, thus, a novel target to prevent late-onset Alzheimer's disease. This article has an associated First Person interview with the first author of the paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom