Rab11FIP1 maintains Rab35 at the intercellular bridge to promote actin removal and abscission
Author(s) -
Nicholas V.G. Iannantuono,
Grégory Emery
Publication year - 2021
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.244384
Subject(s) - midbody , cytokinesis , microbiology and biotechnology , biology , abscission , mitosis , actin , actin cytoskeleton , cytoskeleton , cell division , cell , genetics
Cytokinesis occurs at the end of mitosis/meiosis wherein the cytoplasms of daughter cells are separated. Before abscission, an intercellular bridge containing the remaining furrowing machinery, mitotic spindle and actin cytoskeleton connects the two daughter cells. To remove this actin and allow for the separation of daughter cells, Rab35 vesicles, loaded with the actin oxidizer MICAL1 and the inositol polyphosphate 5-phosphatase OCRL, are recruited to the midbody in a fine-tuned spatiotemporal manner. However, importantly, the means by which these vesicles are recruited is currently unclear. Here, we demonstrate that Rab11FIP1 is recruited to the midbody after Rab35 to scaffold it at the bridge and maintain Rab35 in this region. In the absence of Rab11FIP1, Rab35 dramatically drops from the midbody, inducing defects, such as cytokinetic delays and binucleation due to actin overaccumulation at the intercellular bridge, which can be rescued with Latrunculin A treatment. Importantly, we show that Rab11FIP1 is critical for Rab35 function in actin removal prior to cytokinesis. This article has an associated First Person interview with the first author of the paper.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom