RHOA-mediated mechanical force generation through Dectin-1
Author(s) -
Rohan P. Choraghe,
Tomasz Kołodziej,
Alan Buser,
Ze Rajfur,
Aaron K. Neumann
Publication year - 2020
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.236166
Subject(s) - biology , rhoa , microbiology and biotechnology , computational biology , signal transduction
Dectin-1 (Dendritic Cell associated C-type Lectin 1) is an innate immune pattern recognition receptor which recognizes β-glucan on the Candida albicans (C. albicans) cell wall. Recognition of β-glucan by immune cells leads to phagocytosis, oxidative burst, cytokine and chemokine production. We looked for specific mechanisms that coordinate phagocytosis downstream of Dectin-1 leading to actin reorganization and internalization of fungus. We found that stimulation of Dectin-1 by soluble β-glucan leads to mechanical force generation and areal contraction in Dectin-1 transfected HEK-293 cells and M1 macrophages. With inhibitor studies, we found this force generation is a SYK (Spleen Tyrosine Kinase)-independent, SFK (SRC Family Kinase)-dependent process mediated through the RHOA (Ras homolog family member type A)-ROCK (Rho associated coiled-coil containing protein kinase)-MLC (Myosin light chain) pathway. We confirmed activation of RHOA downstream of Dectin-1 using activity assays and stress fiber formation. Through phagocytosis assays, we found direct evidence for the importance of RHOA-ROCK-MLC signaling in the process of phagocytosis of C. albicans.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom