z-logo
open-access-imgOpen Access
Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary
Author(s) -
Kate Hardy,
Jocelyn Mora,
Carina Dunlop,
Raffaella Carzaniga,
Stephen Franks,
Mark A. Fenwick
Publication year - 2018
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.218123
Subject(s) - biology , oocyte , follicle , ovary , ovarian follicle , folliculogenesis , microbiology and biotechnology , transcription factor , medicine , endocrinology , granulosa cell , phenotype , embryo , genetics , embryogenesis , gene
Maintenance and activation of the limited supply of primordial follicles in the ovary are important determinants of reproductive lifespan. Currently, the molecular programme that maintains the primordial phenotype and the early events associated with follicle activation are not well defined. Here, we have systematically analysed these events using microscopy and detailed image analysis. Using the immature mouse ovary as a model, we demonstrate that the onset of granulosa cell (GC) proliferation results in increased packing density on the oocyte surface and consequent GC cuboidalization. These events precede oocyte growth and nuclear translocation of FOXO3a, a transcription factor important in follicle activation. Immunolabelling of the TGFβ signalling mediators and transcription factors SMAD2/3 revealed a striking expression pattern specific to GCs of small follicles. SMAD2/3 were expressed in the nuclei of primordial GCs but were mostly excluded in early growing follicles. In activated follicles, GC nuclei lacking SMAD2/3 generally expressed Ki67. These findings suggest that the first phenotypic changes during follicle activation are observed in GCs, and that TGFβ signalling is fundamental for regulating GC arrest and the onset of proliferation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom